33 research outputs found

    Pyramid: Enhancing Selectivity in Big Data Protection with Count Featurization

    Full text link
    Protecting vast quantities of data poses a daunting challenge for the growing number of organizations that collect, stockpile, and monetize it. The ability to distinguish data that is actually needed from data collected "just in case" would help these organizations to limit the latter's exposure to attack. A natural approach might be to monitor data use and retain only the working-set of in-use data in accessible storage; unused data can be evicted to a highly protected store. However, many of today's big data applications rely on machine learning (ML) workloads that are periodically retrained by accessing, and thus exposing to attack, the entire data store. Training set minimization methods, such as count featurization, are often used to limit the data needed to train ML workloads to improve performance or scalability. We present Pyramid, a limited-exposure data management system that builds upon count featurization to enhance data protection. As such, Pyramid uniquely introduces both the idea and proof-of-concept for leveraging training set minimization methods to instill rigor and selectivity into big data management. We integrated Pyramid into Spark Velox, a framework for ML-based targeting and personalization. We evaluate it on three applications and show that Pyramid approaches state-of-the-art models while training on less than 1% of the raw data

    Storage and Search in Dynamic Peer-to-Peer Networks

    Full text link
    We study robust and efficient distributed algorithms for searching, storing, and maintaining data in dynamic Peer-to-Peer (P2P) networks. P2P networks are highly dynamic networks that experience heavy node churn (i.e., nodes join and leave the network continuously over time). Our goal is to guarantee, despite high node churn rate, that a large number of nodes in the network can store, retrieve, and maintain a large number of data items. Our main contributions are fast randomized distributed algorithms that guarantee the above with high probability (whp) even under high adversarial churn: 1. A randomized distributed search algorithm that (whp) guarantees that searches from as many as no(n)n - o(n) nodes (nn is the stable network size) succeed in O(logn){O}(\log n)-rounds despite O(n/log1+δn){O}(n/\log^{1+\delta} n) churn, for any small constant δ>0\delta > 0, per round. We assume that the churn is controlled by an oblivious adversary (that has complete knowledge and control of what nodes join and leave and at what time, but is oblivious to the random choices made by the algorithm). 2. A storage and maintenance algorithm that guarantees (whp) data items can be efficiently stored (with only Θ(logn)\Theta(\log{n}) copies of each data item) and maintained in a dynamic P2P network with churn rate up to O(n/log1+δn){O}(n/\log^{1+\delta} n) per round. Our search algorithm together with our storage and maintenance algorithm guarantees that as many as no(n)n - o(n) nodes can efficiently store, maintain, and search even under O(n/log1+δn){O}(n/\log^{1+\delta} n) churn per round. Our algorithms require only polylogarithmic in nn bits to be processed and sent (per round) by each node. To the best of our knowledge, our algorithms are the first-known, fully-distributed storage and search algorithms that provably work under highly dynamic settings (i.e., high churn rates per step).Comment: to appear at SPAA 201

    XRay: Enhancing the Web's Transparency with Differential Correlation

    Get PDF
    Today's Web services - such as Google, Amazon, and Facebook - leverage user data for varied purposes, including personalizing recommendations, targeting advertisements, and adjusting prices. At present, users have little insight into how their data is being used. Hence, they cannot make informed choices about the services they choose. To increase transparency, we developed XRay, the first fine-grained, robust, and scalable personal data tracking system for the Web. XRay predicts which data in an arbitrary Web account (such as emails, searches, or viewed products) is being used to target which outputs (such as ads, recommended products, or prices). XRay's core functions are service agnostic and easy to instantiate for new services, and they can track data within and across services. To make predictions independent of the audited service, XRay relies on the following insight: by comparing outputs from different accounts with similar, but not identical, subsets of data, one can pinpoint targeting through correlation. We show both theoretically, and through experiments on Gmail, Amazon, and YouTube, that XRay achieves high precision and recall by correlating data from a surprisingly small number of extra accounts.Comment: Extended version of a paper presented at the 23rd USENIX Security Symposium (USENIX Security 14

    Web Transparency for Complex Targeting: Algorithms, Limits, and Tradeoffs

    Get PDF
    International audienceBig Data promises important societal progress but exacerbates the need for due process and accountability. Companies and institutions can now discriminate between users at an individual level using collected data or past behavior. Worse, today they can do so in near perfect opacity. The nascent field of web transparency aims to develop the tools and methods necessary to reveal how information is used, however today it lacks robust tools that let users and investigators identify targeting using multiple inputs. Here, we formalize for the first time the problem of detecting and identifying targeting on combinations of inputs and provide the first algorithm that is asymptotically exact. This algorithm is designed to serve as a theoretical foundational block to build future scalable and robust web transparency tools. It offers three key properties. First, our algorithm is service agnostic and applies to a variety of settings under a broad set of assumptions. Second, our algorithm's analysis delineates a theoretical detection limit that characterizes which forms of targeting can be distinguished from noise and which cannot. Third, our algorithm establishes fundamental tradeoffs that lead the way to new metrics for the science of web transparency. Understanding the tradeoff between effective targeting and targeting concealment lets us determine under which conditions predatory targeting can be made unprofitable by transparency tools

    Vers une plus grande transparence du Web

    Get PDF
    International audienceDe plus en plus les géants du Web (Amazon, Google et Twitter en tête) recourent a la manne des « Big data » : ils collectent une myriade de données qu'ils exploitent pour leurs algorithmes de recommandation personnalisée et leurs campagnes publicitaires. Pareilles méthodes peuvent considérablement améliorer les services rendus a leurs utilisateurs, mais leur opacité fait débat. En effet, il n'existe pas a ce jour d'outil suffisamment robuste qui puisse tracer sur le Web l'usage des données et des informations sur un utilisateur par des services en ligne. Motivés par ce manque de transparence, nous avons développé un prototype du nom d'XRay, et qui peut prédire quelle donnée parmi toutes celles présentes dans un compte utilisateur est responsable de la réception d'une publicité. Dans cet article, nous présentons son principe ainsi que les résultats de nos premières expérimentations. Nous introduisons dans le même temps le tout premier modèle théorique pour le problème de la transparence du Web, et nous interprétons les performances d'Xray a la lumière de nos résultats obtenus dans ce modèle. En particulier, nous démontrons qu'un nombre θ(log N) de comptes utilisateurs auxiliaires, remplis selon un procédé aléatoire , suffisent a déterminer quelle donnée parmi les N en présence a causé la réception d'une publicité. Nous aborderons brièvement les extensions possibles, et quelques problèmes ouverts

    Packing Privacy Budget Efficiently

    Full text link
    Machine learning (ML) models can leak information about users, and differential privacy (DP) provides a rigorous way to bound that leakage under a given budget. This DP budget can be regarded as a new type of compute resource in workloads of multiple ML models training on user data. Once it is used, the DP budget is forever consumed. Therefore, it is crucial to allocate it most efficiently to train as many models as possible. This paper presents the scheduler for privacy that optimizes for efficiency. We formulate privacy scheduling as a new type of multidimensional knapsack problem, called privacy knapsack, which maximizes DP budget efficiency. We show that privacy knapsack is NP-hard, hence practical algorithms are necessarily approximate. We develop an approximation algorithm for privacy knapsack, DPK, and evaluate it on microbenchmarks and on a new, synthetic private-ML workload we developed from the Alibaba ML cluster trace. We show that DPK: (1) often approaches the efficiency-optimal schedule, (2) consistently schedules more tasks compared to a state-of-the-art privacy scheduling algorithm that focused on fairness (1.3-1.7x in Alibaba, 1.0-2.6x in microbenchmarks), but (3) sacrifices some level of fairness for efficiency. Therefore, using DPK, DP ML operators should be able to train more models on the same amount of user data while offering the same privacy guarantee to their users
    corecore